SMOTE for Regression

Luis Torgo, Rita P Ribeiro, Bernhard Pfahringer, Paula Branco

Abstract

Several real world prediction problems involve forecasting rare values of a target variable. When this variable is nominal we have a problem of class imbalance that was already studied thoroughly within machine learning. For regression tasks, where the target variable is continuous, few works exist addressing this type of problem. Still, important application areas involve forecasting rare extreme values of a continuous target variable. This paper describes a contribution to this type of tasks. Namely, we propose to address such tasks by sampling approaches. These approaches change the distribution of the given training data set to decrease the problem of imbalance between the rare target cases and the most frequent ones. We present a modification of the well-known Smote algorithm that allows its use on these regression tasks. In an extensive set of experiments we provide empirical evidence for the superiority of our proposals for these particular regression tasks. The proposed SmoteR method can be used with any existing regression algorithm turning it into a general tool for addressing problems of forecasting rare extreme values of a continuous target variable.

Publication
EPIA 2013: Progress in Artificial Intelligence pp 378-389
Paula Branco
Paula Branco
Assistant Professor

I’m an Assistant Professor at EECS, University of Ottawa. My research interests include Artificial Intelligence, Machine Learning, Imbalanced Domains, Outlier Detection, Anomaly Detection, Fraud Detection and Cybersecurity.